Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Emerg Microbes Infect ; 11(1): 2724-2734, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2087655

RESUMEN

The development of safe and effective vaccines to respond to COVID-19 pandemic/endemic remains a priority. We developed a novel subunit protein-peptide COVID-19 vaccine candidate (UB-612) composed of: (i) receptor binding domain of SARS-CoV-2 spike protein fused to a modified single-chain human IgG1 Fc; (ii) five synthetic peptides incorporating conserved helper and cytotoxic T lymphocyte (Th/CTL) epitopes derived from SARS-CoV-2 structural proteins (three from S2 subunit, one from membrane and one from nucleocapsid), and one universal Th peptide; (iii) aluminum phosphate as adjuvant. The immunogenicity and protective immunity induced by UB-612 vaccine were evaluated in four animal models: Sprague-Dawley rats, AAV-hACE2 transduced BALB/c mice, rhesus and cynomolgus macaques. UB-612 vaccine induced high levels of neutralizing antibody and T-cell responses, in all animals. The immune sera from vaccinated animals neutralized the SARS-CoV-2 original wild-type strains and multiple variants of concern, including Delta and Omicron. The vaccination significantly reduced viral loads, lung pathology scores, and disease progression after intranasal and intratracheal challenge with SARS-CoV-2 in mice, rhesus and cynomolgus macaques. UB-612 has been tested in primary regimens in Phase 1 and Phase 2 clinical studies and is currently being evaluated in a global pivotal Phase 3 clinical study as a single dose heterologous booster.


Asunto(s)
COVID-19 , Vacunas Virales , Ratas , Ratones , Humanos , Animales , SARS-CoV-2 , Vacunas contra la COVID-19 , Anticuerpos ampliamente neutralizantes , Pandemias/prevención & control , COVID-19/prevención & control , Ratas Sprague-Dawley , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes , Vacunas de Subunidad/genética , Ratones Endogámicos BALB C , Macaca mulatta , Anticuerpos Antivirales
2.
J Infect Dis ; 226(8): 1401-1406, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: covidwho-2077781

RESUMEN

The highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has caused high rates of breakthrough infections in those previously vaccinated with ancestral strain coronavirus disease 2019 (COVID-19) vaccines. Here, we demonstrate that a booster dose of UB-612 vaccine candidate delivered 7-9 months after primary vaccination increased neutralizing antibody levels by 131-, 61-, and 49-fold against ancestral SARS-CoV-2 and the Omicron BA.1 and BA.2 variants, respectively. Based on the receptor-binding domain protein binding antibody responses, the UB-612 third-dose booster may lead to an estimated approximately 95% efficacy against symptomatic COVID-19 caused by the ancestral strain. Our results support UB-612 as a potential potent booster against current and emerging SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , SARS-CoV-2
3.
Viruses ; 14(6)2022 05 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1903495

RESUMEN

COVID-19 caused by SARS-CoV-2 is continuing to spread around the world and drastically affect our daily life. New strains appear, and the severity of the course of the disease itself seems to be decreasing, but even people who have been ill on an outpatient basis suffer post-COVID consequences. Partly, it is associated with the autoimmune reactions, so debates about the development of new vaccines and the need for vaccination/revaccination continue. In this study we performed an analysis of the antibody response of patients with COVID-19 to linear and conformational epitopes of viral proteins using ELISA, chip array and western blot with analysis of correlations between antibody titer, disease severity, and complications. We have shown that the presence of IgG antibodies to the nucleoprotein can deteriorate the course of the disease, induce multiple direct COVID-19 symptoms, and contribute to long-term post-covid symptoms. We analyzed the cross reactivity of antibodies to SARS-CoV-2 with own human proteins and showed that antibodies to the nucleocapsid protein can bind to human proteins. In accordance with the possibility of HLA presentation, the main possible targets of the autoantibodies were identified. People with HLA alleles A01:01; A26:01; B39:01; B15:01 are most susceptible to the development of autoimmune processes after COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/complicaciones , Humanos , Nucleoproteínas , Glicoproteína de la Espiga del Coronavirus , Síndrome Post Agudo de COVID-19
4.
Biomolecules ; 12(6)2022 06 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1883989

RESUMEN

For the first time, the influence of COVID-19 on blood microrheology was studied. For this, the method of filtering erythrocytes through filters with pores of 3.5 µm was used. Filterability was shown to significantly decrease with the increasing severity of the patient's condition, as well as with a decrease in the ratio of hemoglobin oxygen saturation to the oxygen fraction in the inhaled air (SpO2/FiO2). The filterability of ≤ 0.65, or its fast decrease during treatment, were indicators of a poor prognosis. Filterability increased significantly with an increase in erythrocyte count, hematocrit and blood concentrations of hemoglobin, albumin, and total protein. The effect of these parameters on the erythrocyte filterability is directly opposite to their effect on blood macrorheology, where they all increase blood viscosity, worsening the erythrocyte deformability. The erythrocyte filterability decreased with increasing oxygen supply rate, especially in patients on mechanical ventilation, apparently not due to the oxygen supplied, but to the deterioration of the patients' condition. Filterability significantly correlates with the C-reactive protein, which indicates that inflammation affects the blood microrheology in the capillaries. Thus, the filterability of erythrocytes is a good tool for studying the severity of the patient's condition and his prognosis in COVID-19.


Asunto(s)
COVID-19 , Deformación Eritrocítica , COVID-19/sangre , Eritrocitos , Hemoglobinas , Humanos , Oxígeno , Reología
5.
Thromb Res ; 211: 27-37, 2022 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1621058

RESUMEN

INTRODUCTION: Defects of platelet functional responses in COVID-19 were reported, but their origin and pathophysiological significance are unclear. The objective of this study was to characterize the thrombocytopathy in COVID-19. MATERIALS AND METHODS: Analysis of platelet functional responses to activation by flow cytometry and aggregometry in 46 patients with confirmed COVID-19 of different severity (non-ICU, ICU, and ECMO) over the course of hospitalization alongside with plasma coagulation, inflammatory markers (CRP, fibrinogen, NETosis assays in smears) was performed. RESULTS AND CONCLUSIONS: All patients had increased baseline percentage of procoagulant platelets (healthy: 0.9 ± 0.5%; COVID-19: 1.7 ± 0.6%). Patients had decreased agonist-induced platelet GPIb shedding (1.8 ± 0.7 vs 1.25 ± 0.4), P-Selectin exposure (1.51 ± 0.21 vs 1.1 ± 0.3) and aggregation. The values of these parameters among the non-ICU and ICU cohorts differed modestly, while the ECMO cohort differed significantly. Only ECMO patients had pronounced thrombocytopenia. While inflammatory markers improved over time, the observed platelet functional responses changed only moderately. SARS-CoV-2 RNA was found in 8% of blood samples and it did not correlate with platelet counts or responses. All patients had increased NETosis that moderately correlated with platelet dysfunction. High cumulative dosages of LMWH (average > 12,000 IU/day over 5 days) resulted in an improvement in platelet parameters. The observed pattern of platelet refractoriness was reproduced by in vitro pre-treatment of washed platelets with subnanomolar thrombin or perfusion of blood through a collagen-covered flow chamber. We conclude that platelet dysfunction in COVID-19 is consistent with the intravascular-coagulation-induced refractoriness rather than with an inflammation-induced mechanism or a direct activation by the virus.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Trombocitopenia , Anticoagulantes , Plaquetas , COVID-19/complicaciones , Heparina de Bajo-Peso-Molecular , Humanos , ARN Viral , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Trombocitopenia/tratamiento farmacológico
6.
Data Brief ; 40: 107770, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-1587956

RESUMEN

The SARS-CoV-2 pandemic is a big challenge for humanity. The COVID-19 severity differs significantly from patient to patient, and it is important to study the factors protecting from severe forms of the disease. Respiratory microbiota may influence the patient's susceptibility to infection and disease severity due to its ability to modulate the immune system response of the host organism. This data article describes the microbiome dataset from the upper respiratory tract of SARS-CoV-2 positive patients from Russia. This dataset reports the microbial community profile of 335 human nasopharyngeal swabs collected between 2020-05 and 2021-03 during the first and the second epidemic waves. Samples were collected from both inpatients and outpatients in 4 cities of the Russian Federation (Moscow, Kazan, Irkutsk, Nizhny Novgorod) and sequenced using the 16S rRNA gene amplicon sequencing of V3-V4 region. Data contains information about the patient such as age, sex, hospitalization status, percent of damaged lung tissue, oxygen saturation (SpO2), respiratory rate, need for supplemental oxygen, chest computer tomography severity score, SARS-CoV-2 lineage, and also information about smoking and comorbidities. The amplicon sequencing data were deposited at NCBI SRA as BioProject PRJNA751478.

7.
Diagnostics (Basel) ; 11(8)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1360732

RESUMEN

COVID-19 patients with acute respiratory distress syndrome (ARDS) have an immune imbalance when systemic inflammation and dysfunction of circulating T and B cells lead to a more severe disease. Using TREC/KREC analysis, we studied the level of mature naive T and B cells in peripheral blood of COVID-19 patients and its relationship with clinical and laboratory data. TREC/KREC analysis was performed by multiplex real-time quantitative PCR on a sample of 36 patients aged 45 years or younger. The reduced TREC/KREC level was observed in ARDS patients compared with non-ARDS patients, and similar results were found for the deceased patients. During days 6 to 20 of hospitalization, a higher neutrophil-to-lymphocyte ratio (NLR) was detected in ARDS patients compared with non-ARDS patients. TREC/KREC negatively correlated with NLR; the highest correlation was recorded for TREC per 100,000 cells with the coefficient of determination R2 = 0.527. Thus, TREC/KREC analysis is a potential prognostic marker for assessing the severity and outcome in COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA